Quick Start
Get up and running with SREGym quickly - setup your cluster and run your first agent
Make sure you've completed the Installation steps before proceeding with Quick Start.
Setup your cluster
You need a Kubernetes cluster to run SREGym. For detailed setup instructions, see the Cluster Setup guide.
Running an Agent
Quick Start
To get started with the included Stratus agent:
- Create your
.envfile:
cp .env.example .env-
Open the
.envfile and configure your model and API key. -
Run the benchmark:
python main.pyModel Selection
SREGym supports multiple LLM providers. Specify your model using the --model flag:
python main.py --model <model-id>Available Models
| Model ID | Provider | Model Name | Required Environment Variables |
|---|---|---|---|
gpt-4o | OpenAI | GPT-4o | OPENAI_API_KEY |
gemini-2.5-pro | Gemini 2.5 Pro | GEMINI_API_KEY | |
claude-sonnet-4 | Anthropic | Claude Sonnet 4 | ANTHROPIC_API_KEY |
bedrock-claude-sonnet-4.5 | AWS Bedrock | Claude Sonnet 4.5 | AWS_PROFILE, AWS_DEFAULT_REGION |
moonshot | Moonshot | Moonshot | MOONSHOT_API_KEY |
watsonx-llama | IBM watsonx | Llama 3.3 70B | WATSONX_API_KEY, WX_PROJECT_ID |
glm-4 | GLM | GLM-4 | GLM_API_KEY |
azure-openai-gpt-4o | Azure OpenAI | GPT-4o | AZURE_API_KEY, AZURE_API_BASE |
Default: If no model is specified, gpt-4o is used by default.
Examples
OpenAI:
# In .env file
OPENAI_API_KEY="sk-proj-..."
# Run with GPT-4o
python main.py --model gpt-4oAnthropic:
# In .env file
ANTHROPIC_API_KEY="sk-ant-api03-..."
# Run with Claude Sonnet 4
python main.py --model claude-sonnet-4AWS Bedrock:
# In .env file
AWS_PROFILE="bedrock"
AWS_DEFAULT_REGION=us-east-2
# Run with Claude Sonnet 4.5 on Bedrock
python main.py --model bedrock-claude-sonnet-4.5Note: For AWS Bedrock, ensure your AWS credentials are configured via ~/.aws/credentials and your profile has permissions to access Bedrock.
Monitoring with Dashboard
SREGym provides a dashboard to monitor the status of your evaluation. The dashboard runs automatically when you start the benchmark with python main.py and can be accessed at http://localhost:11451 in your web browser.
Next Steps
Now that you've run your first agent, you can:
- Learn about MCP Tools available for your agent
- Read the guide on Running Your Own Agent to create custom agents
- Check out Troubleshooting if you run into problems
